Publications

2023

  1. D. Dalton, D. Husmeier, and H. Gao. Physics-informed graph neural network emulation of soft-tissue mechanics computer methods in applied mechanics and engineering. Computer Methods in Applied Mechanics and Engineering, 2023

  2. Y. Ge, D. Husmeier, A. Lazarus, A. Rabbani, and H. Gao. Bayesian inference of cardiac models emulated with a time series gaussian process. In Proceedings of the 5th International Conference on Statistics: Theory and Applications (ICSTA’23), page 149, 2023 (The best paper award)

  3. Y. Ge, A. Rabbani, H. Gao, and D. Husmeier. Bayesian inference of complex models emulated with time series gaussian process. In Proceedings of the 37th Internatinoal Workshop on Statistical Modelling, Dortmound, Germany, 2023

  4. D. uan, Y. Wang, X. Luo, M. Danton, and H. Gao. A modelling study of pulmonary regurgitation in a personalized human heart. In International Conference on Functional Imaging and Modeling of the Heart, pages 585–593. Springer, 2023

  5. D. Guan, X. Zhuan, X. Luo, and H. Gao. An updated lagrangian constrained mixture model of pathological cardiac growth and remodelling. Acta Biomaterialia, 166:375–399, 2023

  6. C. Zhang, H. Gao, and X. Hu. A multi-order smoothed particle hydrodynamics method for cardiac electromechanics with the purkinje network. Computer Methods in Applied Mechanics and Engineering, 407:115885, 2023

  7. A. Rabbani, H. Gao, A. Lazarus, D. Dalton, Y. Ge, K. Mangion, C. Berry, and D. Husmeier. Image-based estimation of the left ventricular cavity volume using deep learning and gaussian process with cardio-mechanical applications. Computerized Medical Imaging and Graphics, 106, 2023

  8. N. Thekkethil, S. Rossi, H. Gao, S. Richardson, B. Griffith, and X. Luo. A stabilized linear finite element method for anisotropic poroelastodynamics with application to cardiac perfusion. Computer Methods in Applied Mechanics and Engineering, 405:115877, 2023

2022

  1. D. Dalton, H. Gao, and D. Husmeier. Emulation of cardiac mechanics using graph neural networks. Computer Methods in Applied Mechanics and Engineering, 401, Part B:115645, 2022

  2. L. Cai, Y. Hao, P. Ma, G. Zhu, X. Luo, and H. Gao. Fluid-structure interaction simulation of calcified aortic valve stenosis. Mathematical Biosciences and Engineering, 19:13172– 13192, 2022

  3. L. Cai, T. Zhao, Y. Wang, X. Luo, and H. Gao. Fluid–structure interaction simulation of pathological mv dynamics in a coupled mv–lv model. Intelligent Medicine, 2022

  4. Y. Yang, H. Gao, C. Berry, D. Carrick, A. Radjenovic, and D. Husmeier. Classification of myocardial blood flow based on dynamic contrast enhanced magnetic resonance imaging using hierarchical bayesian models. JRSSC, 2022

  5. A. Borowska, H. Gao, A. Lazarus, and D. Husmeier. Bayesian optimisation for efficient parameter inference in a cardiac mechanics model of the left ventricle. International Journal of Numerical Methods in Biomedical Engineering, 2022, e3593

  6. A. Lazarus, D. Dalton, D. Husmeier, and H. Gao. Sensitivity analysis and inverse uncertainty quantification for the left ventricular passive mechanics. Biomechanics and Modeling in Mechanobiology, 21(3):953–982, 2022

  7. A. Lazarus, H. Gao, X. Luo, and D. Husmeier. Improving cardio-mechanic inference by combining in-vivo strain data with ex-vivo volume-pressure data. Journal of the Royal Statistical Society, Series C, 2022

  8. D. Guan, H. Gao, L. Cai, and X. Luo. A new active contraction model for myocardium using a modified hill model. Computers in biology and medicine, 145:105417, 2022

  9. D. Guan, Y. Mei, L. Xu, L. Cai, X. Luo, and H. Gao. Effects of dispersed fibres in myocardial mechanics, part i: passive response. Mathematical Biosciences and Engineering, 19(4):3972–3993, 2022

  10. D. Guan, Y. Wang, L. Xu, L. Cai, X. Luo, and H. Gao. Effects of dispersed fibres in myocardial mechanics, part ii: active response. Mathematical Biosciences and Engineering, 19(4):4101–4119, 2022

  11. J. Ren, H. Sun, H. Zhao, H. Gao, C. Maclellan, S. Zhao, and X. Luo. Effective extraction of ventricles and myocardium objects from cardiac magnetic resonance images with a multitask learning u-net. Pattern Recognition Letters, 155:165–170, 2022

2021

  1. E. Huethorst, P. Mortensen, R. D. Simitev, H. Gao, L. Pohjolainen, V. Talman, H. Ruskoaho, F. L. Burton, N. Gadegaard, and G. L. Smith. Conventional rigid 2d substrates cause complex contractile signals in monolayers of human induced pluripotent stem cell-derived cardiomyocytes. The Journal of physiology, 600, 2021

  2. D. Guan, X. Luo, and H. Gao. Constitutive modelling of soft biological tissue from ex vivo to in vivo: Myocardium as an example. In International Conference by Center for Mathematical Modeling and Data Science, Osaka University, pages 3–14. Springer, 2021

  3. D. Dalton, A. Lazarus, A. Rabbani, H. Gao, and D. Husmeier. Graph neural network emulation of cardiac mechanics. In Proceeding of 3rd International Conference on Statistics: Theory and Applications (ICSTA’21), 2021

  4. L. Romaszko, A. Borowska, A. Lazarus, D. Dalton, C. Berry, X. L. Luo, D. Husmeier, and H. Gao. Neural network-based left ventricle geometry prediction from cmr images with application in biomechanics. Artifical Intellegence in Medicine, 119, 2021

  5. A. d. S. Costa, P. Mortensen, M. P. Hortigon-Vinagre, M. van der Heyden, n. F. L. Burto, H. Gao, R. D. Simitev, and G. L. Smith. Electrophysiology of hipsc-cardiomyocytes cocultured with hek cells expressing the inward rectifier channel. International Journal of Molecular Sciences, 22:6621, 2021

  6. L. Cai, R. Zhang, Y. Li, G. Zhu, X. Ma, Y. Wang, X. Luo, and H. Gao. The comparison of different constitutive laws and fiber architectures for the aortic valve on fluid–structure interaction simulation. Frontiers in Physiology, 12:725, 2021

  7. P. Mortensen, H. Gao, G. Smith, and R. Simitev. Addendum: Action potential propagation and block in a model of atrial tissue with myocyte-fibroblast coupling. Mathematical Medicine and Biology: A Journal of the IMA, 2021

  8. L. Feng, H. Gao, N. Qi, M. Danton, N. Hill, and X. Luo. Fluid-structure interaction in a fully coupled three-dimensional mitral-atrium-pulmonary model. Biomechanics and modeling in mechanobiology, pages 1–29, 2021

  9. S. Richardson, H. Gao, J. Cox, R. Janiczek, B. Griffith, C. Berry, and X. Luo. A poroelastic immersed finite element framework for modeling cardiac perfusion and fluid-structure interaction. International Journal of Numerical Methods in Biomedical Engineering, 37:e3446, 2021

  10. D. Guan, X. Zhuan, W. Holmes, X. Luo, and H. Gao. Modelling of fibre dispersion and its effects on cardiac mechanics from diastole to systole. Journal of Engineering Mathematics, 128:1–24, 2021

  11. W. Li, H. Gao, K. Mangion, B. Colin, and X. Luo. Apparent growth tensor of left ventricular post myocardial infarction – in human first natural history study. Computers in Biology and Medicine, 129, 2021

  12. Y. Wang, L. Cai, X. Feng, X. Luo, and H. Gao. A ghost structure finite difference method for a fractional fitzhugh-nagumo monodomain model on moving irregular domain. Journal of Computational Physics, 428:110081, 2021

  13. L. Cai, L. Ren, Y. Wang, Y. Li, W. Xie, and H. Gao. Surrogate models based on machine learning methods for parameter estimation of left ventricular myocardium. Royal Society Open Science, 8:201121, 2021

  14. P. Mortensen, H. Gao, G. Smith, and R. Simitev. Action potential propagation and block in a model of atrial tissue with myocyte-fibroblast coupling. Mathematical Medicine and Biology: A Journal of the IMA, dqaa014, 2021

2020

  1. D. Guan, J. Yao, X. Luo, and H. Gao. Effects of myofibre architecture on neonatal porcine ventricular pump function. Royal Society Open Science, 7(4):191655, 2020

  2. W. Li, A. Clanzs, Gao, Hao, A. Martinez, N. De Azcona, M. Fontana, P. Hawkins, S. Biswas, R. Janiczek, C. Jennifer, C. Berry, D. Husmeier, and X. Luo. Passive biomechanical property modelling of human left ventricle with amyloid. Frontier in Physiology, Accepted, 2020

  3. S. Chen, C. R. Sari, H. Gao, Y. Lei, P. Segers, M. De Buele, G. Wang, and X. Ma. Mechanical and morphometric study of mitral valve chordae tendineae and related papillary muscle. Journal of the Mechanical Behavior of Biomedical Materials, in revision:104011, 2020

  4. Y. Wang, H. Lan, T. Yin, Y. Wang, S. McGinty, H. Gao, G. Wang, and Z. Wang. Covalent immobilization of biomolecules on stent materials through mussel adhesive protein (map) coating to form biofunctional films. Material Science & Engineering C, 06:110187, 2020

2019

  1. L. Cai, Y. Wang, H. Gao, X. Ma, G. Zhu, R. Zhang, X. Shen, and X. Luo. Some effects of different constitutive laws on simulating mitral valve dynamics with fsi. Scientific Reports, 9:12753, 2019

  2. Y. Wang, L. Cai, X. Luo, W. Ying, and H. Gao. Simulation of action potential propagation based on the ghost structure method. Scientific Reports, 9:10927, 2019

  3. L. Feng, H. Gao, S. Niederer, and X. Luo. Analysis of an imaged-derived hyperelastic model of left atrium, coupled to mitral valve and fluid-structure interaction. International Journal for Numerical Methods in Biomedical Engineering, 35:e3254, 2019

  4. L. Cai, M. Guo, X. Feng, W. Ying, H. Gao, and X. Luo. Nonstandard finite difference method for nonlinear riesz space fractional reaction-diffusion equation. International Journal of Numerical Analysis and Modeling, 16:925–938, 2019

  5. Z. Duanmu, W. Chen, H. Gao, X. Yang, X. Luo, T. Wang, and N. Hill. A computational model of the coronary arterial tree. Frontiers Physiology, 10:853, 2019

  6. V. Davies, U. Noe, A. Lazarus, H. Gao, B. Macdonald, C. Berry, X. Luo, and D. Husmeier. ` Fast parameter inference in a biomechanical model of the left ventricle using statistical emulation. submitted to Journal of the Royal Statistical Society: Applied Statistics, arXiv preprint. arXiv:1905.06310, 68:1555n– 1576, 2019

  7. U. Noe, A. Lazarus, H. Gao, V. Davies, B. Macdonald, K. Mangion, C. Berry, X. Luo, and D. Husmeier. Gaussian process emulation to accelerate parameter estimation in a mechanical model of the left ventricle: a critical step towards clinical end-user relevance. Journal of the Royal Society: Interface, 16:20190114, 2019

  8. D. Guan, F. Ahmad, P. Theobald, S. Soe, X. Luo, and H. Gao. On the aic-based model reduction for the general holzapfel–ogden myocardial constitutive law. Biomechanics and modeling in mechanobiology, pages 1–20, 2019

  9. L. Romaszko, A. Borowska, A. Lazarus, H. Gao, X. Luo, and D. Husmeier. Direct learning left ventricular meshes from cmr images. In Proceedings of the Internationla Conference on Statistics: Theory and Application, Lisbon, Portugal – August 13-14, 2019

  10. L. Romaszko, A. Lazarus, H. Gao, A. Borowska, X. Luo, and D. Husmeier. Massive dimensionality reduction for the left ventricular mesh. In Proceedings of the Internationla Conference on Statistics: Theory and Application, Lisbon, Portugal – August 13-14, 2019

  11. Y. Yang, H. Gao, C. Berry, A. Radjenovic, and D. Husmeier. Quantification of myocardial perfusion lesions using spatially variant finite mixture modelling of dec-mri. In Proceedings of the Internationla Conference on Statistics: Theory and Application, Lisbon, Portugal – August 13-14, 2019

  12. X. Zhuan, X. Luo, H. Gao, and R. Ogden. Coupled agent-based and soft tissue modelling of lv post myocardial infarction. International Journal for Numerical Methods in Biomedical Engineering, 35:e3155, 2019

2018

  1. L. Feng, N. Qi, H. Gao, W. Sun, M. Vazquez, B. Griffith, and X. Luo. On the chordae structure and dynamic behaviour of mitral valve. IMA Applied Mathmatics, online first:hxy035, IMA Journal of Applied Mathematics, 83:1066 – 1091, 2018

  2. K. Mangion, H. Gao, D. Husmeier, X. Luo, and C. Berry. Recent developments in personalized medicine using image-based biomechanical modelling in myocardial infarction. Heart, 104(7):550–557, 2018

2017

  1. H. Gao, A. Aderhold, K. Mangion, X. Luo, D. Husmeier, and C. Berry. Changes and classification in myocardial contractile function in the left ventricle following acute myocardial infarction. Journal of The Royal Society Interface, 14(132):20170203, 2017

  2. H. Gao, L. Feng, N. Qi, B. Griffith, C. Berry, and X. Luo. A coupled mitral valve – left ventricle model with fluid-structure interaction. Journal of Medical Engineering & Physics, 47:128 – 136, 2017 (Most Cited Medical Engineering & Physics Articles since 2017, accessed on Sep. 2020)

  3. H. Gao, K. Mangion, D. Carrick, D. Husmeier, X. Luo, and C. Berry. Estimating myocardial contractility in acute mi survivors with left ventricular dysfunction from personalised computational heart models. Scientific Report, 7:1–14, 2017

  4. L. Cai, Y. Wang, H. c. a. Gao, Y. Li, and X. Luo. A mathematical model for active contraction in healthy and failing myocytes and left ventricles. PLoS ONE, 12(4):e0174834, 2017

2016

  1. H. Gao, N. Qi, L. Feng, X. Ma, M. Danton, C. Berry, and X. Luo. Modelling mitral valvular dynamics–current trend and future directions. International Journal for Numerical Methods in Biomedical Engineering, 2016

  2. A. Van Hirtum, B. Wu, H. Gao, and X. Luo. Constricted channel flow with different crosssection shapes. European Journal of Mechanics-B/Fluids, 63:1–8, 2017

  3. K. Mangion, H. Gao, C. McComb, D. Carrick, G. Clerfond, X. Zhong, X. Luo, C. Haig, and C. Berry. A novel method for estimating myocardial strain: Assessment of deformation tracking against reference magnetic resonance methods in healthy volunteers. Scientific Reports, 6, 2016

  4. W. Chen, H. Gao, X. Luo, and N. Hill. Study of cardiovascular function using a coupled left ventricle and systemic circulation model. Journal of biomechanics, 49(12):2445–2454, 2016

2015

  1. S. Land, V. Gurev, S. Arens, C. M. Augustin, L. Baron, R. Blake, C. Bradley, S. Castro, A. Crozier, M. Favino, et al. Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour. 471(2184):20150641, 2015

  2. N. Qi, H. Gao, R. W. Ogden, N. A. Hill, G. A. Holzapfel, H.-C. Han, and X. Luo. Investigation of the optimal collagen fibre orientation in human iliac arteries. Journal of the mechanical behavior of biomedical materials, 52:108–119, 2015

  3. H. Gao, C. Berry, and X. Luo. Image-derived human left ventricular modelling with fluidstructure interaction. pages 321–329, 2015

  4. H. Gao, N. Qi, X. Ma, B. E. Griffith, C. Berry, and X. Luo. Fluid-structure interaction model of human mitral valve within left ventricle. pages 330–337, 2015

  5. H. Gao, W. Li, L. Cai, C. Berry, and X. Luo. Parameter estimation in a holzapfel–ogden law for healthy myocardium. Journal of engineering mathematics, 95(1):231–248, 2015

  6. L. Cai, H. Gao, X. Luo, and Y. Nie. Multi-scale modelling of the human left ventricle. Scientia Sinica Physica, Mechanica & Astronomica, 45:024702, 2015

2014

  1. H. Gao, X. Ma, N. Qi, C. Berry, B. Griffith, and X. Luo. A finite strain nonlinear human mitral valve model with fluid-structure interaction. International journal for numerical methods in biomedical engineering, 30:1597–1613, 2014

  2. H. Gao, D. Carrick, C. Berry, B. Griffith, and X. Luo. Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method. IMA Journal of Applied Mathematics, 79:978–1010, 2014

  3. H. Gao, H. Wang, C. Berry, X. Luo, and B. E. Griffith. Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading. International journal for numerical methods in biomedical engineering, 30:1199–1222, 2014

  4. H. Gao, A. Allan, C. McComb, X. Luo, and C. Berry. Left ventricular strain and its pattern estimated from cine cmr and validation with dense. Physics in medicine and biology, 59(13):3637, 2014

  5. H. Wang, X. Luo, H. Gao, R. Ogden, B. Griffith, C. Berry, and T. Wang. A modified holzapfelogden law for a residually stressed finite strain model of the human left ventricle in diastole. Biomechanics and modeling in mechanobiology, 13(1):99–113, 2014

  6. L. Saba, H. Gao, E. Raz, S. V. Sree, L. Mannelli, N. Tallapally, F. Molinari, P. P. Bassareo, U. R. Acharya, H. Poppert, et al. Semiautomated analysis of carotid artery wall thickness in mri. Journal of Magnetic Resonance Imaging, 39(6):1457–1467, 2014

  7. Y. Zhu, X. Luo, H. Gao, C. McComb, and C. Berry. A numerical study of a heart phantom model. International Journal of Computer Mathematics, (ahead-of-print):1–17, 2014

2013

  1. H. Gao, B. E. Griffith, D. Carrick, C. McComb, C. Berry, and X. Luo. Initial experience with a dynamic imaging-derived immersed boundary model of human left ventricle. In Functional Imaging and Modeling of the Heart, pages 11–18. Springer Berlin Heidelberg, 2013

  2. H. Wang, H. Gao, X. Luo, C. Berry, B. Griffith, R. Ogden, and T. Wang. Structure-based finite strain modelling of the human left ventricle in diastole. International journal for numerical methods in biomedical engineering, 29(1):83–103, 2013

  3. X. Ma, H. Gao, B. E. Griffith, C. Berry, and X. Luo. Image-based fluid–structure interaction model of the human mitral valve. Computers & Fluids, 71:417–425, 2013

  4. H. Gao, K. Kadir, A. R. Payne, J. Soraghan, C. Berry, et al. Highly automatic quantification of myocardial oedema in patients with acute myocardial infarction using bright blood t2- weighted cmr. Journal of Cardiovascular Magnetic Resonance, 15(1):28, 2013

  5. L. Saba, N. Tallapally, H. Gao, F. Molinari, M. Anzidei, M. Piga, R. Sanfilippo, and J. S. Suri. Semiautomated and automated algorithms for analysis of the carotid artery wall on computed tomography and sonography a correlation study. Journal of Ultrasound in Medicine, 32(4):665–674, 2013

  6. U. Acharya, S. V. Sree, M. Mookiah, L. Saba, H. Gao, G. Mallarini, and J. Suri. Computed tomography carotid wall plaque characterization using a combination of discrete wavelet transform and texture features: A pilot study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 227(6):643–654, 2013

2012

  1. K. Kadir, H. Gao, A. Payne, J. Soraghan, and C. Berry. Lv wall segmentation using the variational level set method (lsm) with additional shape constraint for oedema quantification. Physics in medicine and biology, 57(19):6007, 2012

  2. L. Saba, H. Gao, U. R. Acharya, S. Sannia, G. Ledda, and J. S. Suri. Analysis of carotid artery plaque and wall boundaries on ct images by using a semi-automatic method based on level set model. Neuroradiology, 54(11):1207–1214, 2012

2011

  1. H. Gao, Q. Long, S. K. Das, U. Sadat, M. Graves, J. H. Gillard, and Z.-Y. Li. Stress analysis of carotid atheroma in transient ischemic attack patients: evidence for extreme stress-induced plaque rupture. Annals of biomedical engineering, 39(8):2203–2212, 2011

  2. H. Gao, Q. Long, S. Kumar Das, J. Halls, M. Graves, J. H. Gillard, and Z.-Y. Li. Study of carotid arterial plaque stress for symptomatic and asymptomatic patients. Journal of biomechanics, 44(14):2551–2557, 2011

2009

  1. H. Gao, Q. Long, M. Graves, J. H. Gillard, and Z.-Y. Li. Carotid arterial plaque stress analysis using fluid–structure interactive simulation based on in-vivo magnetic resonance images of four patients. Journal of biomechanics, 42(10):1416–1423, 2009

  2. H. Gao, Q. Long, M. Graves, J. H. Gillard, and Z.-Y. Li. Study of reproducibility of human arterial plaque reconstruction and its effects on stress analysis based on multispectral in vivo magnetic resonance imaging. Journal of Magnetic resonance imaging, 30(1):85–93, 2009

  3. H. Gao, Q. Long, U. Sadat, M. Graves, J. Gillard, and Z. Li. Stress analysis of carotid atheroma in a transient ischaemic attack patient using the mri-based fluid–structure interaction method. The British Journal of Radiology, 82:46–54, 2009

2008

  1. H. Gao and Q. Long. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques. Journal of biomechanics, 41(14):3053–3059, 2008

2006 and before

  1. G. Zhao, H. Gao, J. Wu, S.-x. Xu, M. Collins, Q. Long, C. Konig, and A. Padhani. 2d numeri- ¨ cal simulation of effect anti-angiogenic factors angiostatin and endostatin on tumor-induced angiogenesis. J. Med. Biomech, 21(4):272–279, 2006

  2. H. Gao, S. Xu, Y. Cai, and M. Collins. Numerical simulation of tumor-induced angiogenesis in and out of tumor incorporating mechanical effects. J. Med. Biomech, 21:1–7, 2006

  3. H. Gao, S. Xu, Y. Cai, M. Collins, y. Jiang, and J. Wang. Computation of hemodynamics in solid tumor based on the model of angiogenesis. Chinese Quarterly of Mechanics, 27(3):449–453, 2006

  4. H. Gao, S. Xu, Y. Cai, and M. Collins. Two dimensional mathematical models of tumorinduced angiogenesis. Chinese Quarterly of Mechanics, 26(3):468–471, 2005

  5. Y. Cai, Y. Liu, H. Gao, Y. Jiang, G. Wu, and S. Xu. Predicted mathematical model of intracranial pressure through lumbar cerebrospinal fluid pressure. Chinese Quarterly of Mechanics, 4:029, 2005

  6. Y. Cai, S. Xu, y. Jiang, and H. Gao. Blood flow in a coronary capillary considering influence of vessel nonlinear length chang and inflitration. Chinese Quarterly of Mechanics, 26(2):241– 247, 2005

  7. Y. Cai, Y. Liu, H. Gao, and et al. Numerical simulation of cerebral hemodynamics and intracranial pressure dynamics. Chinese Quarterly of Mechanics, 26(3):455–458, 2005

  8. Y. Liu, G. Wu, F. Yuan, Y. Jiang, H. Gao, and S. Xu. Pulse pressure and mean pressure relationship of intracranial pressure and lumbar cerebrospinal fluid pressure. J. Biomed. Eng. China, 22(4):704–707, 2005

  9. H. Gao, G. Wu, Y. Liu, F. Yuan, Y. Jiang, and S. Xu. Analysis of the low frequency components of the intracranial pressure. Journal of Shanghai Biomedical Engineering, 24(3):10–14, 2003

  10. H. Gao and Q. Long. Carotid plaque stress analysis: Issues on patient-specific modeling. In Multi-Modality Atherosclerosis Imaging and Diagnosis, pages 95–106. Springer New York, 2014

  11. H. Gao and Q. Long. Atherosclerosis plaque stress analysis: A review. In Multi-Modality Atherosclerosis Imaging and Diagnosis, pages 81–93. Springer New York, 2014

  12. H. Gao and Q. Long. Stress analysis on carotid atherosclerotic plaques by fluid structure interaction. In Atherosclerosis Disease Management, pages 87–118. Springer, 2011

PhD Thesis

H. Gao. Carotid plaque stress analysis by fluid structure interaction based on in-vivo mri: Implications to plaque vulnerability assessment. 2010, Brunel Unviversity, UK. PDF